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ABSTRACT

The principal weakness of Least Mean Squares (LMS)

algorithm is that adaptation can be sometimes slow.

Convergence is known to depend mainly on eigenvalue

spread of the input signal, through the time constants

of the various convergence modes. However, most LMS

convergence analysis do not consider the in
uence of

cross correlation between input and desired output sig-

nals, which plays also a signi�cant role on convergence

and is the main topic of this paper. The extreme cases

of high and low statistical similarity between input and

desired output are analysed in detail. Furthermore, an

LMS-based adaptive system that seizes the convergence

properties explored is also introduced. This system is

shown to achieve better performance (that is, faster con-

vergence while maintaining the steady-state error level)

than LMS when input and desired output present low

or moderately low statistical similarity.

1 INTRODUCTION

The Least Mean Squares (LMS) algorithm is, surely,

the most widely used adaptive system, due to its sim-

plicity as well as robustness [1]. The main disadvant-

age of LMS is that convergence can be sometimes slow.

This happens when the eigenvalues of the input signal

are disparate and slow modes of adaptation dominate

the settling time. The input signal determines by itself

whether a mode is fast or slow, since the time constant

of a convergence mode depends only on the correspond-

ing eigenvalue of the input signal, and on the adaptation

step size, which is the same for every mode. Neverthe-

less, it is the relative excitation of convergence modes

what makes them dominant or non-dominant. In this

paper, we show that modes excitation depends on cross

correlation between the input and the desired output.

Therefore, it is possible to obtain fast adaptation even

with high eigenvalue spread, if the excitation of conver-

gence modes and the steady-state mean-square error are

such that slow modes are completely unnoticed.

In next section, we analyse LMS convergence in order

to reach a formulation for modes excitation as a function

of cross correlation between input and desired output.

For better text understanding and completeness, some

well known results on LMS convergence are reproduced

here, following [1] and [2] . Subsequently, convergence

for the extreme situations, from the point of view of

statistical similarity between input and desired output,

is examined. Experimental results are also provided.

In section 3, an LMS-based system, which takes ad-

vantage of the results exposed here to speed up conver-

gence, is introduced and compared to single LMS.

2 CONVERGENCE ANALYSIS

Convergence of any adaptive system can be analysed

by means of the learning curve of the algorithm, which

is a plot of the cost function versus time. For LMS,

we have �n � E
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We can assume that the data signal, xn, and the LMS

weights, wn, are uncorrelated with each other [1], [2].

This assumption holds when the data signal changes

much more rapidly than the mean value of the weights

(slow adaptation approach). Making use of the previous

assumption and the usual de�nitions for the correlation

matrix, R = E
�
xnx

T

n

	
, and the cross correlation vec-

tor, p = E fxndng, (1) can be rewritten as
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where �2
d
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is the desired output power.

Since the LMS weight vector 
uctuates, it can be

modelled as the sum of the mean weight vector, wn =

E fwng, plus a stochastic noisy component

wn = wn + ewn (3)

From the previous de�nition it follows that E fewng = 0

and E fwng = wn. Using (3), the last term of the sum



in (2) is given by
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The minimum mean-square error, obtained when the

weight vector is set at its optimal value, wopt = R�1p, is

given by �min = �2
d
�wT

opt
Rwopt. Using this expression

and (4) and rearranging, eq. (2) becomes
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This expression is equal to the one obtained for the

steepest descent algorithm, except for the last term in

the sum. According to [2], the following expression is

derived assuming the weight noise, ewn, is uncorrelated

with the data, xn,
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where � is the LMS adaptation step size and �l are the

eigenvalues of the correlation matrix. Consequently, this

term is only due to the excess mean-square error. That

is, �
1

= �min +E
�ewT

n
Rewn

	
, and
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We can use in (7) the usual weight vector transform-

ations, vn = wn � wopt and v0
n

= QTvn, where

R = Q�QT is the normal form of the correlation mat-

rix, beingQ the eigenvector matrix and � the eigenvalue

matrix. Thus,
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According to [1], we have
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Taking into account that

QTwopt = QTR�1p = QTQ��1QTp = ��1QTp

(10)

and after some computations, (9) becomes
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Eventually, using (11) and considering that
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n
is a diagonal matrix, we

derive the �nal expression for the mean-square error
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where ql is the eigenvector associated with the eigen-

value �l and L is the order of the adaptive �lter.

It is clear from (12) that the learning curve is the sum

of L decaying exponential functions when the adapta-

tion step size, �, is properly chosen. Each of these ex-

ponential functions is called a convergence mode, which

is de�ned by its time constant,

�l �
1

4��l
(13)

and its excitation,
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Thus, (14) relates the excitation of an adaptation mode

with its corresponding eigenvalue, which also determ-

ines the mode time constant, and with the input-desired

output cross correlation, through the cross correlation

vector p.

In the white input case, there is just one convergence

mode, K exp (�n=�), since there is only one eigenvalue,

�, with multiplicity L. The excitation K is the sum of

every mode excitations in (14). Therefore, convergence

speed can be easily optimised in this case.

2.1 High statistical similarity between input

and desired output

The maximum statistical similarity is obtained when the

desired output is simply a delayed version of the input

signal, dn = Axn�� . When the delay is inside the �lter

span, that is, when 0 � � < L, the cross correlation

vector is proportional to one of the columns in the input

correlation matrix

p = 
xdr� = 
xd

LX
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being qj;� the �-th component of the j-th eigenvector.

Using the orthogonality property between eigenvectors,

we �nd that
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Therefore, using (16) in (14) we �nd the excitation of

convergence modes for this case to be
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Figure 1: Learning curves comparison for high and low

statistical similarity between input and desired output.

The term
�
qT
l
w0 � ql;�
xd

�2
is a positive value com-

pletely independent from the eigenvalue �l. Therefore,

the excitation of each mode is, in the case of high stat-

istical similarity, directly proportional to its own eigen-

value.

2.2 Low statistical similarity between input and

desired output

In this case the desired output is correlated with the

input signal, to make possible some mean-square error

reduction (we do not consider here the trivial case of no

cross correlation), but the cross correlation function is

just an impulse. Thus, cross correlation vector compon-

ents are zero except for one of them

p = [0; � � � ; 0; 
xd; 0; � � � ; 0]
T

(18)

Consequently, we have
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Substituting (19) in (14), the modes excitation is given

by
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Supposing that qT
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w0 6= 0, when �l is very high the

excitation can be approximated by
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that is to say, excitation is again directly proportional

to the corresponding eigenvalue. Nevertheless, when �l
is very low, the excitation will be given by
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Figure 2: Whitener+LMS system block diagram.

So, the excitation is in this case inversely proportional

to the eigenvalue of the convergence mode.

Note that qT
l
w0 = 0 is a very common case, since

usually w0 = 0 to avoid an increase in the mean-square

error level at the beginning of the algorithm. In this case

the excitation is also given by eq. (22), independently

of the eigenvalue. Therefore, every convergence mode

will be excited in a way inversely proportional to its

eigenvalue.

To sum up, in the low statistical similarity case, slow

modes are very excited whereas fast modes will be very

or little excited depending on the term qT
l
w0. In any

case, slow modes can dominate convergence.

Figure 1 shows the learning curves for the same in-

put signal (with eigenvalue spread �max=�min � 240)

and two di�erent desired outputs obtained by computer

simulation. In both cases there was an uncorrelated

noise added to the desired output, limiting the achiev-

able cancellation to the same level, and the same �lter

lengths and adaptation step sizes were used. It is clearly

appreciated how the low similarity case converges much

more slowly than the high similarity one, in accordance

with our previous discussion.

3 FAST CONVERGENCE SYSTEM

In �gure 2 it is depicted a system that seizes the con-

vergence properties discussed in the previous section by

means of a \divide & conquer" approach. The aim of

this system is to obtain faster convergence than LMS

without a�ecting the steady-state mean-square error

performance. This system has two cascaded stages, the

�rst of them being a whitener, that is, a prediction error

�lter, that pre-processes or conditions the input signal

for the second one, which is an LMS.

The prediction �lter in the whitener, P (z), is adapt-

ive, and uses the LMS as adaptation algorithm. In this

case the desired output is the input signal delayed by

one sample. According to our previous discussion, con-

vergence of this stage is expected to be fast, since there

is high statistical similarity between input, xn�1, and

desired output, xn.

The second stage is just an LMS system with

whitened input, exn. As we said before, a white input

signal means that there is only one convergence mode,
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Figure 3: Learning curves comparison: Whitener +

LMS vs. single LMS.

and so, there are no fast nor slow modes. The e�ciency

of LMS approaches in this case its theoretical limit [1].

However, exn whiteness will depend on the whitening

capability of the �rst system. In any case, exn will be

whiter than the original input, xn and eigenvalue spread

will be at least reduced.

Experimental results were obtained with the same sig-

nals for the Whitener + LMS system and single LMS.

The learning curves for both systems, in a case of mod-

erately low statistical similarity between xn and dn, are

shown in �gure 3. It can be seen that the Whitener

+ LMS system achieves much better performance than

single LMS, since convergence is faster while maintain-

ing the steady-state error level.

Another system, called ALE + FxLMS (alsoWhitener

+ FxLMS), that exploits the convergence properties

analysed here is exposed in references [3] and [4]. This

system is similar to the Whitener + LMS system, with

the second stage being a Filtered-x LMS system instead

of an LMS. It was derived in the context of active control

of sound and vibration.

4 CONCLUSIONS

In this paper we have analysed convergence properties

of LMS systems depending on the statistical similarity

between the input and the desired output signals. It

has been seen that high statistical similarity is wished in

order to achieve fast convergence, even when the input

signal presents great eigenvalue spread. Since the input

signal and the desired output are not normally a choice,

the Whitener + LMS system, introduced here, divides

the adaptive problem in two di�erent stages that are

expected to converge faster than the one-stage or single

LMS. Experimental results con�rm that the Whitener +

LMS system can perform much better than single LMS.

Acknowledgements

This work was supported by the Spanish Education and

Culture Ministry through its National Program on En-

vironment (research project: AMB99-1095-C02-02).

References

[1] Widrow, B., Stearns, S. D., Adaptive Signal Pro-

cessing, New Jersey: Prentice-Hall, 1985, ch. 6.

[2] Alexander, S. T., Adaptive Signal Processing: The-

ory and Applications, New York: Springer-Verlag,

1986, ch. 5.

[3] Vicente, L., Elliott, S. J., Masgrau, E., \Fast Act-

ive Noise Control for Robust Speech Acquisition" in

Proceedings of Eurospeech, Budapest, pp. 2403-2406,

1999.

[4] Vicente, L., Masgrau, E., \Performance Comparison

of Two Fast Algorithms for Active Control" in Pro-

ceedings of Active 99, Fort Lauderdale, Florida, pp.

1089-1100, 1999.


